


NASA Technical Paper 1924 

Comparison of Data Inversion 
Techniques for Remotely  Sensed 
Wide-Angle  Observations 
of Earth Emitted  Radiation 

Richard N. Green 
LangZey Research Center 
Hampton,  Virginia 

National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Branch 

1981 





CONTENTS 

THEORY ............................................................................ 3 
Formulation of Problem  for  Emitted Radiation .................................... 3 
Shape  Factor  Technique .......................................................... 5 
Parameter  Estimation  Technique .................................................. 7 
Deconvolution  Technique ......................................................... 8 

IMPLEMENTATION OF TECHNIQUES ...................................................... 9 
Field Representations ........................................................... 9 
Transformation  Between Regions  and  Spherical  Harmonics ......................... 1 1  
Relationship  Between  Region  Size  and  Spherical  Harmonic  Representation ......... 13 
Calculation of Important Parameters ............................................ 14 

APPLICATION OF TECHNIQUES TO DATA SET ............................................ 16 
Earth Radiation  Data ........................................................... 16 
Shape  Factor  Technique ......................................................... 17 
Parameter  Estimation  Technique ................................................. 20 
Deconvolution  Technique ........................................................ 23 

APPENDIX A . SPHERICAL HARMONIC COEFFICIENTS FROM  REGIONAL VALUES ................ 35 
APPENDIX B . loo x IOo REGIONAL  VALUES  FROM loo x 20° REGIONAL  VALUES ............ 38 
APPENDIX C . SPECTRUM OF A RANDOM FIELD .......................................... 40 

iii 

. 



INTRODUCTION 

For many years,  observations of the  Earth  radiat ion budget have  been made from 
o r b i t i n g   s a t e l l i t e s .  These  observations can  be analyzed by su i t ab le   t echn iques   t o  
estimate the   r ad ian t   ex i t ance   f i e ld   a t   t he   t op  of the  atmosphere. A number  of such 
data  analysis  techniques are avai lable ,  each  with its awn simpli€ying  assumptions and 
cha rac t e r i s t i c s  which affect   the   der ived  radiant   exi tance.  I n  the  past ,   there   has  
been some consideration of how e r ro r s  i n  measurements  and errors   associated  with a 
given  technique  affect   the  derived  radiant  exitance.  However, l i t t l e  emphasis has 
been placed on the  differences between the  techniques  themselves and how these  dif-  
ferences  affect   the  derived  radiant  exitances.   In  the  present  study  the  effect  on 
the  radiant   exi tance  es t imates  of analyzing  the same data  with  three  techniques is 
examined. 

The longwave component of the  Earth  radiation  budget, measured by a  wide f i e l d  
of view radiometer  aboard an o r b i t i n g   s a t e l l i t e ,  has been  chosen as   the  data   type  for  
t h i s  study. Each measurement is an i n t e g r a l  of the   i r rad iance  from a l l   po in t s   w i th in  
t h e   f i e l d  of  view weighted by the  directional  response of the  sensor. The shape 
factor  technique  has been the  most popular way t o   s o l v e   t h i s   i n t e g r a l  measurement 
equation. Each measurement is divided by a sca l e r   t o   de r ive   t he   r ad ian t   ex i t ance   a t  
the   top  of t he  atmosphere. With another  approach,  the  parameter  estimation  tech- 
nique, a l l  measurements are  processed  together  as a batch and the  radiant   exi tance 
estimate is defined  as a l e a s t   s b a r e s   f i t   t o   t h e   d a t a .  With t h e   t h i r d  approach, t he  
deconvolution  technique,  use is made of the   fac t   tha t   spher ica l  harmonics a r e   t h e  
eigenfunctions of t he   i n t eg ra l  measurement operator. These three  techniques  are 
studied by applying them t o   t h e  same s e t  of radiat ion  data  and comparing the   r e su l t -  
ing  radiant   exi tances  on a global,  zonal, and 100 regional  scale.  

Detai ls  of the  technique  derivations and implementations  are  very  important t o  
understanding  the  results.  For this   reason  the  basic  measurement equation which 
r e l a t e s   t he  measurements to   the  der ived  radiant   exi tance is formulated. Each tech- 
nique is derived from this  equation, and the  associated  assumptions  are  set   forth.  
I n  addition, each technique  has its own unique  implementation. For  example, t h e  
r e s u l t s  of the  shape  factor  technique depend on t h e   s i z e  of the  surface  area  over 
which point  estimates  are  averaged  to  produce  regional  estimates. The parameter 
es t imat ion   resu l t s   a re   a f fec ted  by the  numerical   integration scheme employed and by 
the  model  of the  radiat ion  direct ional   funct ion.  The deconvolut ion  resul ts   a lso  are  
a function of t h i s  model and i n  addition  vary  with  the  degree of t runcat ion of t he  
spherical  harmonic representation. Each  of these  aspects  of the  techniques is inves- 
t i g a t e d  by means  of numerical examples  and discussed. The r e s u l t s  of t he  deconvolu- 
t ion  technique  are  in  terms of spher ica l  harmonics,  while t h e   r e s u l t s  of the   o ther  
two techniques  are  regional  radiant  exitances. To compare these  three  techniques,  
t h e i r   r e s u l t s  must be transformed t o   t h e  same coordinate  system, and the  transforma- 
t i on   a l so   a f f ec t s   t he   r e su l t s .   F ina l ly ,  w e  examine the  advantages and disadvantages 
of each  data  analysis  technique. 
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SYMBOLS 

m an ,b: complex coef f ic ien ts  of spherical  harmonics, W-m 
-2 

A area,  m2 

Ag 
area of globe, km2 

B matrix of inf luence  coeff ic ients  (see eq. ( 1 3 ) )  

Bik influence of radiant  exitance of k th  region on i t h  measurement 

cm,sm, In 
m in t eg ra l s  defined by equations (27) through (29) 

‘n ‘n 
m m  

F 

h 

K 

L 

8 

m 

M 

N 

N:: 

p:: 

r 

R 

Re 

S( a )  

X 

Ym ,Ym 

y:: 

cn sn 

a 

ah 

2 

r ea l   coe f f i c i en t s  of spherical  harmonics, W-m-2 

shape  factor  (see eq. (7 1 )  

s a t e l l i t e   a l t i t u d e  above Re, km 

t o t a l  number  of regions 

Earth-emitted  radiance, W-m-2-sr 

measurement operator 

measured r a d i a t i o n   a t   s a t e l l i t e   a l t i t u d e ,  W-m-2 

radiant  exitance, W-m 

degree of truncation;  also,  number  of measurements 

normalizing  coefficients  for  spherical  harmonics 

associated Legendre  polynomial of degree n and order m 

distance from surface element t o   s a t e l l i t e ,  km 

directional  function, sr 

radius of Earth-atmosphere  system, km 

angular  response of sensor 

a rb i t ra ry   rea l   func t ion  on the  surface of a sphere 

real   spherical  harmonics of degree n and order m 

complex spherical  harmonic of degree n and order m 

cone angle a t   s a t e l l i t e  from s a t e l l i t e   n a d i r   t o   p o i n t  on surface of Earth 

cone  angle t o  horizon 

- 1  

-2 

-1 



clock  angle from nor th   abou t   t he   s a t e l l i t e   nad i r   t o   po in t  on surface 
of Earth 

smoothing  parameter (see eq. (31 1 1 

Earth  central   angle  

angular  radius of a c i rcular   region 

Kronecker de l ta   func t ion  

zenith  angle 

co la t i tude  

nth  eigenvalue of measurement operator 

reg iona l   cor re la t ion   coef f ic ien t  

weighting  function 

variance of  random variable  

degree  dispersion, W-m (see eq. (39) 

azimuth 

longitude 

sol id   angle ,  sr 

-2 

Subscript: 

S s a t e l l i t e  

Abbreviations: 

FOV f i e l d  of view 

LD limb  darkening 

Lamb Lambert i a n  

A circumflex ( I )  over a symbol denotes  an  estimate. A t i l d e  ( - 1  over a symbol 
denotes  the smoothed radiant   exi tance  f ie ld .  

THEORY 

Formulation of Problem for  Emitted  Radiation 

The surface a t  the   t op  of the  Earth-atmosphere  system is approximated by a 
sphere of radius  Re. The Earth-emitted  radiance L leaving any point on t h i s  
spher ica l   sur face  is modeled as a function of co la t i tude  0, longitude @, and zenith 
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angle  8 of the ex i t ing   r ay  and is  not a function of azimuth 4 (see f ig .  1) .  The 
radiant   exi tance M a t  a poin t  on t h i s   s u r f a c e  is given by 

N I 

Figure 1.- Ear th - sa t e l l i t e  geometry. 

o r  

A rad ia t ion   d i rec t iona l   func t ion   for  emitted rad ia t ion  R ( o , @ , e ) ,  the limb darkening 
€unction, is defined so t h a t  

In   order   for   equat ions ( 1  1 and (2 1 t o  be  compatible, R must s a t i s f y  t h e  normalizing 
condition, 

For th i s   s tudy  R is assumed t o  have no azimuthal dependence. I f   t he   su r f ace  is 
Lambertian  and radiates w i t h  equa l   in tens i ty   in  a l l  direct ions,   then R ( O , @ , e )  = 1. 
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Now consider a radiation  sensor a t  satell i te a l t i t ude ,  as shown i n   f i g u r e  1. I n  
modeling the  satell i te measurements, w e  do not  consider measurement errors or t i m e  
va r i a t ion  of t he   r ad ia t ion   f i e ld .  Thus, the  radiance from the   t op  of the  Earth- 
atmospheric  system  incident on the  sensor a t  a co la t i t ude  os, longitude as, and 
a l t i t u d e  h is modeled as 

where 8 is a function of the   loca t ions  of t h e  satell i te (os ,@s)  and of the   sur face  
element a t  t he  top of t h e  atmosphere (o,@), i s  the   so l id   ang le  a t  t h e  satel l i te  
subtended by the  surface  element,  (x is the  nadir   angle  a t  t h e  satell i te from t h e  
l o c a l   v e r t i c a l  t o  the  surface  element,   and  the  integration is carried out  over  the 
f i e l d  of view ( FOV) which  depends  on os,  as, and  h. The function S ( a) is t h e  
angular  response of t h e   s e n s o r   t o  incoming radiat ion.  This angular  response  function 
could be expanded t o  incorporate   the geometry  of other   types of sensors as w e l l  as t o  
incorporate a dependence  on  azimuth. However, i n   t h i s   s t u d y  a per fec t ly   b lack   f la t -  
plate sensor normal t o  t h e   v e r t i c a l  is assumed f o r  which S( a) = cos a. By use of 
equation (2 1 ,  equation ( 4 )  may be wr i t ten  

which r e l a t e s   t h e  known measurement m t o   t h e  unknown radiant   exi tance M. 

Shape Factor  Technique 

Many investigators  (e.g. ,  Smith e t  al .  1977, Jacobowitz e t  al .  1979, Weaver and 
House 1979) have  used  the  shape  factor  technique  (also  called  inverse  square l a w )  t o  
transform wide f i e l d  of view rad ia t ion  measurements a t  sa te l l i t e  a l t i t u d e   t o  esti- 
mates of the   rad ian t   ex i tance   a t   the  top of the  atmosphere. The measurement m is  
divided by a geometric  shape  factor F t o  obtain  the  radiant   exi tance  associated 
with  the  nadir  point. The assumption is made that   the   radiant   exi tance a t  the  top  of 
t h e  atmosphere is constant   over   the  ' f ie ld  of  view, or t h a t  M ( O , @ )  = M(Os,Qs) ,  so 
that   equat ion (5) gives 

where the  circumflex ( " 1  denotes  an estimate and the  geometric  shape  factor is given 
bY 
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I n  most appl icat ions,  the shape f ac to r  is s impl i f ied  by the   fur ther   assumption  that  
the  direct ional   funct ion is independent of pos i t ion ;   tha t  is, R(@,@, 8)  = R( 8). I f  
the   var iab les  of in tegra t ion   a re  changed  from sol id   angle  8 t o   t h e  cone and clock 
angles a and $, then  equation ( 7 )  becomes 

o r  

F = 2 /ah R(8)  cos a s i n  a da 
a-o 

where  ah is the  cone angle to   the   hor izon ,   o r  t h e  extent of t h e   f i e l d  o f  view. 
From figure 1 and the  law  of s ines ,   the   fo l lowing   re la t ion  is obtained: 

Re 
Re + h 

s i n  a = s i n  8 

Different ia t ing  equat ion (9) gives 

Re 
Re + h 

COS a da = cos 8 de 

Subst i tut ing  equat ions (9) and (10  1 into  equat ion ( 8 )  yie lds  

or  from equation (3 ) 

F = (  Re + h 
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Thus, t he  geometric  shape f ac to r  is independent of the   d i rec t iona l   func t ion   for   the  
assumptions  considered and is a function  only of the  measurement a l t i t u d e  h.  For a 
c i r c u l a r   o r b i t ,   t h e  shape f ac to r  is constant   for  a l l  measurements. whatever  the 
case,   the shape factor  technique is characterized by reducing each  measurement indi-  
vidual ly  from s a t e l l i t e   a l t i t u d e   t o  a rad ian t   ex i tance   a t   the   top  of t h e  atmosphere 
by dividing by a geometric  shape  factor. These individual  radiant  exitances  are  used 
to   def ine   the   g loba l   rad ian t   ex i tance   f ie ld .  

Parameter  Estimation  Technique 

With the  parameter  estimation  technique, a l l  measurements are  processed  as a 
batch, and a g loba l   r ad ian t   ex i t an t   f i e ld   a t   t he   t op  of t he  atmosphere is produced by 
means  of a matrix  inversion.  Consider  the  surface of t he  globe  divided  into K 
regions,  each  with  constant  radiant  exitance and direct ional   funct ion %(e)  

face  area  instead of sol id   angle  as 
(k  = 1, 2 ,  ..., K). The measurement equation ) can  be expressed  in  terms of sur- 

where r is the   d i s tance  from t h e   s a t e l l i t e   t o   t h e   s u r f a c e  element.  Incorporating 
the  assumed regional  radiant  exitance model gives 

m ( @  ,@ ,h )  = s s  

where the   in tegra t ion  

1 
K 

- 
7E R k ( e )  cos a - 

cos 8 dA 

k= 1 r 2 

is over  the  surface  area  that  is i n  bo th   the   f ie ld  of  view and 
the  k t h  region. Thus, the  i t h  measurement is modeled a s  

K 

where Bik is the  inf luence  coeff ic ient  of Mk on t h e   i t h  measurement  and is given 
bY 

In  matrix form, t h e  set of equations  defined by equation (11 )  become 

m = BE - ( 1 3 )  
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where m is a column  vector  of N measurements, M is a column  vector of K 
regional  radiant  exitances,  and B is  the  observational  matrix  with  elements  Bik. 

For a large  measurement  set (N > K) over  the  globe,  equation (13 )  represents  an 
overdetermined  set  of  simultaneous  equations  which.yield  the  least  squares  solution, 

Deconvolution  Technique 

The  deconvolution  technique,  described  by  Smith  and  Green (1981) and  Bess  et  al. 
(19811, can  be  viewed  as a parameter  estimation  technique  with a spherical  harmonic 
basis  set  rather  than a piecewise  constant  basis  set.  The  deconvolution  solution to 
the  measurement  equation (5) can  be  found  analytically,  but  it  requires  additional 
assumptions.  It  is  convenient  to  express  the  relationship  between  the  measured  radi- 
ation  m(Os,@s)  and  the  unknown  radiant  exitance M ( O , @ )  as 

where  denotes  the  linear  integral  measurement  operator  of  equation ( 5 ) .  Smith 
and  Green (1981) have  shown'that  the  eigenfunctions  of  this  linear  operator  are 
spherical  harmonics,  that  is, 

where  Yt(Os,@s ) is a spherical  harmonic  of  order m and  degree n evaluated  at 
the  subsatellite  point.  The  associated  eigenvalue A is  given  by n 

A n = 2  /'h Pn(cos 0 Y) R(e) cos a sin a da 
a=o 

where  Pn(cos y )  denotes  the  Legendre  polynomial  of  degree n as a function  of  the 
Earth  central  angle y (see  fig. 1 ) .  

0 

Because  spherical  harmonics  are  eigenfunctions  of  the  measurement  operator,  let 
the  radiant  exitance  at  the  surface be represented  by a series  of  spherical  harmonics 
truncated  at  degree N: 

N n  

n=O  m=-n 
M ( O , @ )  = bm  Ym(O,@) ( 1 8 )  n n  

8 
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A l s o ,  let  t h e  measurements  be represented as 

N n  
m ( 0 , Q  = am yrn(0,@) 

n=O  m=-n n n  

Substi tuting  equations  (18) and (19) into  equation  (15)  and  using  equation  (16)  give 

m 

b: = 5;- n 

n 

a 

and the  radiant   exi tance estimate a t  the  surface is 

Thus, t h e  estimate of the   rad ian t   ex i  tance depends on the   coe f f i  

(20 1 

c i e n t s  of t he  mea- 
surement representat ion a: and the  eigenvalues of t he  measurement operator An. 

IMPLEMENTATION OF TECHNIQUES 

Important t o  any data  analysis  technique is its application. Many times, ease 
of appl icat ion dictates the  choice of the  technique. Such implementation d e t a i l s  as 
the  coordinate  system,  numerical  techniques, computer t i m e  and storage  requirements, 
and necessary  assumptions are a l l  part of  a technique and a f f e c t   t h e   f i n a l   r e s u l t s .  

Field  Representations 

The r ad ian t   ex i t ance   f i e ld   a t   t he  top of the   Ear th ' s  atmosphere is represented 
i n   t h i s  paper i n  t w o  ways: i n  a regional  grid  system  and  in a spher ica l  harmonic 
system. Each system  has  advantages. The transformations from  one representat ion t o  
the   o the r  is necessary when comparing resu l t s .  

The f i r s t  system, i l l u s t r a t e d   i n   f i g u r e  2, is the  basic   regional   gr id  system. 
It is obtained by div id ing   the   Ear th   in to  IOo colatitude  zones  and  then  subdividing 
each zone i n t o  an  even number of regions of equal area. The equatorial   zones 
80° < 0 < 90° and 900 < 0 < l o o o  each  contain 36 regions, so t h a t  each  region is 
bounded by l o o  l i n e s  of co la t i tude  and 100 l i n e s  of longitude.  In a l l  other  zones, 
t he  number of regions is selected t o  make the  areas of these  regions as nearly as 
possible equal t o  those a t  t h e  equator. A l l  of these  areas  are r e f e r r e d   t o  as e i t h e r  
l o o  X loo  regions or simply l o o  regions. 
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Three  other  regional  grid  systems are derived  from  this  basic  system. A 5O x 5O 
regional  grid  system is obtained by dividing  each loo reg ion   in   ha l f   in   bo th   co la t i -  
tude  and  longitude. A 2.5O X 2.5O regional  grid  system is obtained by dividing  each 
5 O  reg ion   in   ha l f   in   bo th   co la t i tude  and  longitude. A t h i r d  system is obtained by 
combining adjacent loo reg ions   in  pairs i n  each  zone to  obtain loo X 20° regions. 
The rad ian t   ex i tance   f ie ld  is represented  in   these  gr id   systems by a piecewise con- 
stant  function  over  the  regions.  

Figure 2.- Polar view of loo x 10' regional gr id  representation. 

Another way to   r ep resen t   t he   r ad ian t   ex i t ance   f i e ld  is by a system of spherical  
harmonics. I f  X(@,a) is a real function on the   sur face  of a sphere,  then a repre- 
sen ta t ion  of x(O,Q) is 

X(O,@) = 2 l n  cm Ym cn (0 ,Q)  + sm Y m  (@,a4 
n=O m=O n sn  

where (2: and S: are r ea l   coe f f i c i en t s  of t he   sphe r i ca l  harmonics Y z n  and Y t n ,  
respect ively.  The spherical  harmonics are  defined by 
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where 

Moreover, the following  properties  apply: 

y" yi dA = y" yi dA = 4,gj  hi 
/,,here cn cj /,here sn sj n m  

Ym Yi dA = 0 
Lpher e cn sj 

where 6: is the Kronecker  delta  function. The radiant  exitance  over the surface  of 
the Earth  can  be  defined by the coefficients CE and SE. 

Transformation  Between  Regions  and  Spherical  Harmonics 

The regional  grid  system  defines the radiant  exitance  at  every  point as  a piece- 
wise  constant  function  in terms of the regional values. The  spherical  harmonic  sys- 
tem defines the radiant  exitance  at  every  point as  a linear  combination  of  spherical 
harmonics  in terms of the coefficients CE and St. A given  set  of  regional  values 
can be transformed  to  spherical harmonic  coefficients +y the principle  of  orthogonal 
projection  as  follows. Multiplying equation (2 1 1 by Y: ( @ , @ I ,  integrating  over the 
sphere,  and taking into  account the orthogonality  condizions  of  equations (23) and 
(24) give the coefficients as 

.Since X(0,@) is  knawn  in terms of its  regional  values Xk, we have 
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K 

':=& k= 1 'k 1 m 

Region k 

and  from  equation  (221, 

or 

Similarly, 

Nm K 

where subscripts 1 and  2 denote the boundaries  of a region.  The  integrals  in  equa- 
tions (25) and (26) are  defined  as 

These quantities  are  efficiently  computed by recursive  formulas (Bess et  al.  1981). 
Equations (25) and (26) define the  transformation between the regional  grid system 
and the spherical  harmonic  system. 
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The transformation from the spherical harmonic coefficients to  the regional 
values  also follows from the principle of orthogonal projection. The regional values 
of a function X(o,@) are simply the average  over the region,  or 

where Ak is the surface area  of the kth  region. Substituting for X(o,@) and 
expressing the results in terms of definitions (27) through (29) yield 

This equation defines the transformation from the spherical harmonic system to the 
regional grid  system. 

Relationship Between  Region  Size  and 

Spherical Harmonic Representation 

The transformation from the spherical harmonic system to the regional system  is 
accomplished by averaging over the region (eq. (3011, which smooths the representa- 
tion.  Thus, the transformation from regional values  back to spherical harmonic coef- 
ficients (eqs. (25) and (26)) yields a set  of coefficients that  represent the aver- 
aged or smoothed field. However, we wish to recapture as well as possible the origi- 
nal unsmoothed field  from the regional values. Therefore, the spherical harmonic 
coefficients produced from this coordinate transformation must  be increased, or 
enhanced, to represent the original field. Consider the smoothing parameter Pn 
defined by Pellinen  (1967) and  given by (appendix A) 

1 
(cos y )  sin y dy 

If a field is smoothed by replacing each  point  value with the average value  over a 
circular region with radius Y*, then  the coefficients and of the smoothed 

spherical harmonic representation are  given by = pnCt  and s"" = $,St. Rapp 
(1977) has shown that smoothing over square regions can be approxlmated with pn 
provided that an effective radius is used. The effective radius gives circular 
regions with the same surf ace  area as square  regions.  For  example, a 10 O X 1 O o  
region corresponds t o  a circular region with y* = 5.63O. The smoothing parameter 

I? 
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Bn is presented   in   f igure  3 f o r  two values of Y*. Thus, t o   r ecap tu re   t he   o r ig ina l  
spher ica l  harmonic coef f ic ien ts  CE and  Sn  from the regional  values,  we  first 
ca lcu la te   the   spher ica l  harmonic coef f ic ien ts  and tha t   represent  the smooth 
f ie ld   (eqs .   (25)  and (26 ) )  and then  divide them by p,, t h a t  is, 

m 

c; = Bn cn s: = B, sn - 1% -1m (32 1 

This  approach was followed  throughout t h i s  study when spher ica l  harmonics w e r e  com- 
puted from regional  values. 

SMOOTH  ING 
PARAMETER. 

Pn 
. 4  t 

Y a =  2.82' (5' x 5') 
(10' x 10') 

I I I I I I .  I I I I I I 
0 4 8 12 16 20 24 

DEGREE, n 
Figure 3.- Regional  smoothing  parameter. 

Calculation of Important  Parameters 

A radiant   exi tance  f ie ld  can be characterized i n  a number of ways. Three impor- 
tant   character is t ic   parameters   are   the  zonal   radiant   exi tance,   the   global  
radiant  exitance,  and t h e  radiant  exitance  gradients.  If  the  regional  radiant  exit- 
ance  values  are known, then t h e  zonal  radiant  exitance Mi is  
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where i ranges  over a l l  regions i n  the   j th   co la t i tude  zone  and  where the  prime 
denotes  zonal  values.  Similarly,  the  global  radiant  exitance is 

where A i s  the  area of t he  globe and k ranges  over a l l  regions. It can be shown 
that  the  global  radiant  exitance is i d e n t i c a l   t o  C: as  given by equation  (25).   In 

addition, we define  the  pole-to-pole  gradient  as Cy and the  equator-to-pole  gra- 
dient   as  C2. The deconvolution  technique  produces  these  values  directly  since 
they  are   spherical  harmonic coef f ic ien ts ,  whereas t h e  shape fac tor  and parameter 
estimation  techniques  produce  regional  values from which the  gradient  values  are 
determined by equation  (25). 

9 

0 

The rad ia t ion   f ie lds  produced by t h e  three  analysis  techniques  are compared i n  
two  ways.  The f i r s t  comparison is i n  physical  space by comparing regional  values, 
and the second  comparison is i n  spectral  space by comparing the  spherical  harmonic 
coeff ic ients .  

Comparison in  physical  space.- Define the  difference f n  t h e   i t h  IOo region 
between two rad ia t ion   f ie lds   as  ' &Ii. The differences &l, i n  the  zonal  radiant 
exitances  follow from equation (33) w i t h  Mi replaced by Mi. Further, w e  define 
t h e  average  zonal  difference  as 

Area weighted mean  18 
of absolute  zonal 
difference 

W e  also  define  the  average loo regional  difference  as 

Area weighted mean K 
of absolute  loo = A 
regional  difference k=l A k l % l  

-1 

Another descriptive  parameter is  

Standard  deviation of 
regional  differences 

> =  

- 
K 

A Ak(&lk - -1 

k=l 
L 2 

(35 

(36 1 

(37 1 
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where 

We can also ca l cu la t e   t he   co r re l a t ion   coe f f i c i en t  between f i e l d  1 and f i e l d  2 on a 
l o o  regional scale as 

where 

Comparison i n  spectral space.- In   spec t r a l  space, w e  compare the  degree disper- 
s ions Q of each f i e l d  given by n 

APPLICATION OF TECHNIQUES TO DATA SET 

The three  techniques which have  been presented were used t o  analyze wide f i e l d  
of view radiometer  data t o  produce a rad ian t   ex i tance   f ie ld  a t  t h e  top of t h e  atmo- 
sphere. Each technique  has i ts  own assumptions  and l imi ta t ions  which are examined 
indiv idua l ly   in   th i s   sec t ion .  The same data  set w a s  used €or a l l  numerical  examples, 
so tha t   the   d i f fe rences   in   the   der ived   rad ia t ion   f ie lds  are e n t i r e l y  due to   t he   t ech -  
nique and the  assumptions employed. 

Earth  Radiation Data 

The measurement data  used  in  this  study t o  def ine  the  Earth 's  longwave rad ia t ion  
f i e l d  were obtained from the  Earth  Radiation Budget (Em) instrument  aboard  the 
Nimbus 6 s a t e l l i t e .  A descr ipt ion of t he  EFU3 instrument  and  calibration is given by 
Smith e t  al .  ( 1 9 7 7 ) .  The data  tapes were supplied by the  National Oceanic  and Atmos- 
pheric  Administration. 

16 



The ERB instrument  obtained  both  fixed  wide-angle  and  scanning  narrow-angle 
measurements. The data  considered  here are the   f ixed  wide-angle measurements a t  
satel l i te  a l t i t ude .  One data   channel   recorded  the  total   Ear th  measurement (0.2 t o  
50 elm) and another  channel  recorded  the  shortwave measurement (0.2 t o  3.8 m). The 
longwave contr ibut ion is the   d i f fe rence  between these  t w o  measurements. The ERB 
instrument  operated  with a duty  cycle of 2 days on and 2 days o f f .  Measurements were 
taken  every 16 seconds. The data  set fo r   t h i s   s tudy   cons i s t s  of approximately 46 000 
wide-angle  measurements taken  during August 1975. The emphasis i n   t h i s   s t u d y  is not 
on  the measurement data or the   der ived   f ie lds   bu t  on the   d i f f e rences   i n   t he   f i e lds  
derived  with  different  assumptions  and  techniques. 

The model of the   rad ian t   ex i tance   f ie ld  is independent  of time; thus a l l  mea- 
surement data were co l l ec t ed   i n to  5" X 5" regions a t  satell i te a l t i t u d e   ( h  = 1070 km) 
and  averaged. We processed  only 1664 averages  instead of t h e  46 000 individual  
measurements. 

Shape Factor  Technique 

With the  shape factor  technique,  the  radiant  exitance a t  the   top  of t he  atmo- 
sphere is derived from each measurement by dividing by a shape f ac to r  (eq. ( 6 ) ) .  The 
t w o  basic  assumptions are t h a t  ( 1 )  the   radiant   exi tance a t  the   top  of t he  atmosphere 
is  constant  over  the  f ield of view and ( 2 )  the   es t imate  of radiant  exitance is asso- 
ciated with  the  region which contains   the  nadir   point .  As a r e s u l t  of t h e   f i r s t  
assumption, which is a great simplification,  the  technique  yields  point  estimates of 
the  radiant   exi tance a t  nad i r   t ha t  are about 5 percent   in   error  (Weaver and  Green 
1980, Green 1981). However, these  es t imates  are seldom in te rpre ted   as   po in t  esti- 
mates but are  used  to  represent  the  average  radiant  exitance  over an area. In   f ac t ,  
these  estimates best   represent  the  average  radiant  exitance  over a c i rcu lar   sur face  
area  centered  a t   nadir   wi th  a 20" diameter. On the  average  with  the  shape  factor 
technique,  the  average  radiant  exitance  over  this area can  be  estimated t o  within 
about 1 percent (Weaver and Green 1980, Green 1981 1. In   th i s   s tudy  we do not con- 
s ider   point   es t imates  or estimates over  circular  regions,  but  estimates  over  square 
regions,  over  zones,  and  over  the  globe. A l l  estimates of radiant  exitance whose 
nadir   points  are i n  a pa r t i cu la r  area a r e  averaged.  Thus, t h e  assumption of constant 
radiant   exi tance  over   the  f ie ld  of view is not as r e s t r i c t i v e   a s  one  might imagine. 
The l a rge r   t he  area, t he  more appropriate  the  assumption. The second  assumption of 
assoc ia t ing   the  estimate of radiant  exitance  with  the  region  that   contains  the  nadir 
point  follows from t h e  geometry of t he  measurement. For  a  uniform f i e l d ,  an  incre- 
mental area centered a t  nadir  has more influence on the  measurement than any o ther  
incremental area i n   t h e   f i e l d  of view. 

In   addi t ion  t o  these  t w o  assumptions, t w o  simplifying  assumptions have  been made 
about   the   d i rec t iona l   func t ion .   F i r s t ,  we assume that   R(8)  is the  same f o r  a l l  
po in ts  on the  globe.  This  assumption w a s  shown t o   y i e l d  a shape  factor which is 
independent of the   d i rec t iona l   func t ion ,  namely, F = [Re/(Re + h )  ] . Second, w e  
model h as a constant,  1070 h f o r   t h e  Nimbus 6 data set. Thus, f o r  an Earth 
radius  of 6378 km and  an  atmospheric  height of 30 km, w e  have a shape f ac to r  of 

2 

6378 + 30 
= (6378 + 30 + 1070 = 0.7343 
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With these  assumptions  the  only  parameter  that  affects  the  derived  radiation 
f i e l d  is the   s i ze  of the  regional  grid system t h a t  is employed. The 46 000 measure- 
ments  have  been  averaged  over  a 5O x 5 O  grid  system a t   s a t e l l i t e   a l t i t u d e .  Each of 
these  averages is divided by the  shape f a c t o r   t o  produce  an  estimate of the  average 
radiant  exitance of a 5 O  X 5 O  region a t   t h e   t o p  of t he  atmosphere.  These estimates 
can easi ly  be combined t o   y i e l d  loo X loo regional  radiant  exitance  estimates. 
Another  approach would be t o  average  the 46 000 measurements  over  a IOo X I O o  gr id  
system a t   s a t e l l i t e   a l t i t u d e  and then t o  reduce  each  average t o   t h e   t o p  of t he  atmos- 
phere. Th i s  approach  allows for   l ess   spa t ia l   var ia t ion  and  can be considered  infe- 
r i o r   t o   t h e   f i r s t  approach. The difference between these two s o l u t i o n s   i l l u s t r a t e s  
the   e f fec t  of the  gr id  system size.  

Table I presents  these two solutions and the  differences between them. The 
global  radiant  exitances  as  given by equation (34) d i f f e r  by 0.30 W-m'2 because  of 

TABLE I.- SOLUTIONS FROM SHAPE FACTOR TECHNIQUE  ILLUSTRATING 

EFFECT OF GRID SYSTEM 

Parameter 

Global  radiant  exitance, y-m-2 ........... 
Pole-to-pole  gradient, w-m-2 ............. 
Equator-to-pole gradient, W-m-2 .......... 
1 O o  regional  radiant  exitance, W-mm2 : 

Pacif ic ,   tropical  ...................... 
Pacific,  high  latitude ................. 
Atlantic,  subtropical .................. 
Sahara ................................. 
Greenland .............................. 
South Pole ............................. 

Case 1, 
data  averaged 

over 5 O  regions 

235.39 

11.40 

-22.03 

266.03 
191.33 
268.29 
279.59 
221.09 
124.50 

Case 2, 
data  averaged 

over loo regions 

235.09 

11.61 

-22.27 

265.58 
191.23 
268.02 
281.60 
220.71 
118.57 

Area weighted mean of  absolute  zonal  differences, W-m-2 ................. 
Area weighted mean of  absolute 100 regional  differences, W-m-2 .......... 
Standard deviation of 10° regional  differences, W-m-2 ................... 

Case 1 
minus 
case 2 

0.30 

-.21 

.24 

.45 

.10 

.27 
-2.01 

.38 
5.93 

0.34 

.83 

1.44 

t he  g r i d  system. The pole-to-pole  gradient and the  equator-to-pole  gradient  are 
given by the  spherical  harmonic coef f ic ien ts  Cy and C2, respec t ive ly ,   a t   the   top  
of the  atmosphere, as  determined from equations ( 2 5 )  and (32). The global  value Co 0 

can a l so  be calculated from these  equations which give  the same value  as equa- 
t i on  (341, since  the smoothing is given by 6 = l .  Also included i n  t ab le  I are   the  
loo regional  radiant  exitances  for  six  speciflc  regions.  The average  zonal  differ- 
ence as  computed from e p a t i o n  (35) is 0.34 W-m-2, nearly  the same as   the  global  
difference of 0.30 W-m- . I n  general,  the  smaller  the  area i n  question,  the  greater 
the  difference.  This is i l l u s t r a t e d  by the  average  regional  difference of 0.83 W-m-2 
a s  computed from equation (36) and their   standard  deviation of 1.44 W-m-2 from  equa- 
t i o n  (37). If  we consider  the  range of regional   dif ferences  to  be f2U about t h e i r  

0 

0 
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mean, then they range over 0.30 f 2 ( 1.441, or from -2.58  W-m-2 to 3.18 W-~L-~. (The 
mean regional difference  is  given by the global  difference (0.30  W-m-2). The  six 
specific regional differences all fall within this range of differences except for 
the South Pole. 

The zonal differences for the  two solutions are plotted in  figure 4. Notice the 
unusually  large difference for  160° < 0 < 170° compared with the small differences 
for all other zones. The problem is  due to nonuniform satellite sampling combined 
with a large latitudinal gradient. Using the 5O grid  system,  we  can determine the 
5O zonal radiant exitance from 160° < 0 < 165O to be  145.38  W-m and from 
165O < 0 < 170° to be  123.35  W-m-2.  By averaging the two 5O zonal radiant exitances 
with the appropriate area weighting, we obtain 136.16  W-rnW2 which corresponds to the 
5' grid system solution. In the loo grid  system,  this 5O zonal distinction is  not 
made: averaging all data between 1600 < 0 < 170° results in 129.54 W-rne2. If the 

2 

zoo 

W -In -2 

ZONAL 
DIFFERENCE, 

I I I I 1 
0 30 60 90 120 150 180 

COLATITUDE, deg 

Figure 4.- Zonal differences due to grid system (So or loo) for 
shape  factor  technique. 

satellite sample were uniform with  area, then the loo zonal results would be the 
same. Since the number of measurements for  160° < 0 < 165O was 841 and the number  of 
measurements for 165O < 0 < 170° was  2154, the southern zone was weighted more. This 
nonuniform sampling is a result of orbital geometry  and  data elimination due to Sun 
contamination (Bess et  al.  1981 1 .  The difference in the 160° < 0 < 170° zonal rad- 
iant exitance is also a function of the latitudinal gradient. If the 5O zonal values 
were  equal, then the number of measurements would  not  matter. Notice that the dif- 
ference in the loo < 0 < 20° zonal radiant exitance is  not  nearly  as  large. This 
results from a smaller latitudinal gradient for the northern zone. Nonuniform sampl- 
ing  combined  with a large latitudinal gradient is also the cause of the large  differ- 
ence in  radiant exitance for the South Pole loo region. 

The question arises  as to why  large differences in radiant exitance do  not occur 
for the 170° < 0 < 180°  zone. The Nimbus 6 orbit  has  an inclination slightly  less 
than looo, which means that the nadir  point  slightly  exceeds a latitude of  f80°. 
Thus,  we  have sampling for the 170° < 0 < 180° zone, although all of  it  is near 
0 = 170O. A similar situation exists at the North Pole. For  the 5O grid  system, the 
satellite samples 170° < 0 < 175O  but  not  175O < 0 < 180O. Thus,  we m s t  extrapolate 
into the 175O < 0 < 180°  zone. The rule has been adopted to set this zonal radiant 
exitance equal to the 170° < 0 < 175O  estimate. Since both 5O zones have the same 
radiant exitance, we understandably obtain an estimate for the 5O grid  system which 
is similar to the loo grid system estimate. 

'19 



I 

. I f   reducing  the  s ize  of t h e   g r i d  system  from a l o o  gr id  t o  a So gr id  changes t h e  
160° < 0 < 170° zonal estimate, then what e f f e c t  does fur ther   reducing  the  gr id  sys- 
tem t o  2.5O have? The So gr id ,   l ike   the  l o o  grid,  overweights  the estimates toward 
t h e  polar values  because of t h e  satel l i te  sampling. The 2.5O grid  reduces  this  bias 
and  increases  the  zonal  radiant  exitance t o  137.92 W - ~ L ' ~  f o r  160° < 0 < 1 70° .  How- 
e v e r ,   t h i s  small change may not be s ign i f i can t  compared with  the  accuracy of t h e  
shape factor  technique. 

Parameter Estimation  Technique 

With the  parameter estimation  technique, a l l  measurements are processed  together 
as a batch  and  the  radiant  exitance estimate a t  the   t op  of the atmosphere is a least 
squares f i t   t o   t h e   d a t a   u s i n g   e q u a t i o n  ( 1 4 ) .  The  two basic  assumptions  are  that  
( 1 )  the   rad ian t   ex i tance  a t  t h e  top of t he  atmosphere is constant  over a region and 
( 2 )  the   d i rec t iona l   func t ion  is known f o r  each  region. The f i r s t  assumption is rea- 
sonable  since w e  des i r e  t o  estimate the  mean radiant  exitance  over a region,  and  the 
estimates w e  obtain by assuming the   rad ian t   ex i tance   to  be constant  closely resemble 
t h e  mean regional  radiant  exitances.  The second  assumption of known d i rec t iona l  
functions  introduces errors i n t o   t h e  estimates. Estimates of the  radiant   exi tance 
f o r   l a r g e  areas l i ke   t he   g lobe   o r  a zone a re   no t  as s e n s i t i v e   t o   t h e   d i r e c t i o n a l  
funct ions  as   regional  estimates. These e r ro r s  are examined i n   t h i s   s e c t i o n  by a 
numerical example. 

One problem  with  implementing the  parameter  estimation  technique  (eq. ( 1 4 ) )  is 
t h e   s i z e  of t he  BTB matrix. There are 416,   loo  X l o o  regions  over  the  globe. 
Thus, t h e  416 X 416 B ~ B  matrix  contains 173  056 elements o r  83  736 i f  symmetry i s  
taken  into  account. The required computer s torage w a s  reduced by one-fourth by esti- 
mating the   rad ian t   ex i tance   in  IOo X 20° regions.  These 1 O o  X 20° estimates are 
divided  into l o o  X IOo estimates by a curve f i t t i n g  scheme presented  in  appendix B. 

A source of error is the  choice of t he   d i r ec t iona l   func t ion   fo r   t he  208 rectan- 
gular 10 O X 20° regions.  This  function  has been denoted %( 0) and is included i n  
the   ca l cu la t ion  of Bik (eq. ( 1 2 ) ) .  The e f f e c t  of different   funct ions w a s  examined 
by t w o  numerical  examples i n  which a l l  l o o  X 20° regions were assumed t o  have t h e  
same di rec t iona l   func t ion .   In   the   f i r s t  case the   rad ia t ion  was assumed t o  be 
Lambertian, o r  R k ( e )  = 1 .  In   t he  second case a direct ional   funct ion  with a con- 
s iderable  amount of limb darkening w a s  assumed and is  given by 

where O o  G 8 G goo .  This  function  represents a lower bound t o  a family of limb  dark- 
ening  functions  based on Nimbus 2 data  (Raschke et a l .  1973) .  I f   t hese  t w o  direc- 
t ional  functions  are  considered upper  and  lower  bounds, t h e  two so lu t ions   es tab l i sh  
bounds on the  radiant   exi tance due t o  uncer ta in ty   in   the   reg iona l   d i rec t iona l  func- 
t ions .  

Part of the  implementation of t h e  parameter estimation  technique is t h e  selec- 
t i o n  of a quadrature  formula of the  inf luence  coeff ic ients   given by equation (121 ,  
t h a t  is, 
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where  Bik is  the   in f luence  of the  kth  region (loo x 20° region) on t h e   i t h  measure- 
ment, and the   i n t eg ra t ion  is o v e r   t h e   i t h   f i e l d  of  view t h a t  is also i n   t h e   k t h  
region. A very practical numerical  integration scheme is t o  subdivide  the  regional 
g r id  system i n t o  smaller subregions  and  approximate  the  integral of equation (12)  by . > 

J-J 

where j ranges  over a l l  the  subregions  that  are i n  b o t h   t h e   i t h   f i e l d  of  view and 
the  kth  region. The subscr ip t  j denotes t h a t  a parameter is eva lua ted   a t   t he  
center   point  of the  j th  subregion. Also,  a  subregion is inc luded   in   the  summation i f  
i ts center   po in t   qua l i f ies  and is excluded  otherwise.  This means that  the  boundaries 
of t he   i n t eg ra t ion  are approximated by meridional  and  lati tudinal  l ines.   This bound- 
a ry   e r ror  and the  quadrature error a re  reduced by making the  subgrid  system  smaller 
a t  t he  expense of computational  effort.  Numerical examples are given  for t w o  d i f f e r -  
ent  subgrid  systems. 

Three  numerical  examples are presented   in  table 11. The measurement data for  
each example are the  same and were averaged  into so x 5 O  regions a t  sa te l l i te  a l t i -  
tude.  This  reduced  the number of  measurements t o  1664 values, which  were processed 

TABLE 11.- SOLUTIONS FROM PARAMETER ESTIMATION  TECHNIQUE  ILLUSTRATING 

EFFECTS OF QUADRATURE SUBGRID SYSTEM AND DIRECTIONAL  FUNCTION 

-~ 

Parameter 

~ _ _ .  . 

Global  radiant  exitance, W-m-2 ........... 
Pole-to-pole  gradient, W-m-2 ............. 
Equator-to-pole  gradient, W-mm2 .......... 
10.  regional  radiant  exitance, w-m-2: 

Pacif ic ,   tropical  ...................... 
Paci f ic ,   h i#   la t i tude  ................. 
Atlantic,  subtropical .................. 
Greenland 
Sahara 

South Pole ............................. 
................................. .............................. 

....................... 
___.” ~ ~ 

Computer time,  sec 

Lambertian R, 
Case 1 ,  

5O auadrature 

235.37 

11.59 

-23.44 

270.72 

279.65 
187.63 

307.34 
225.30 
97.98 

120 

Lambertian R, 
Case 2, 

!. 5O quadrature 

235.42 

11.61 

-23.35 

270.64 
186.87 
280.04 

226.29 
308.38 

96.55 

335 

!imb darkening R, 
Case 3, 

2.5O quadrature 

235.42 

11.58 

-23.21 

270.73 
187.72 
278.91 

225.59 
305.45 

99.71 

456 

Area weighted  man  of  absolute  zonal  differences, W-m-2 ..................................... 
A r e a  weighted reem of  absolute 10. regional  differences, W-IU-’ ............................ 
Standard  deviation  of  loo  regional  differences, w - m 2  ..................................... 
~.~ - ~ -~ 

Zase 1 
minus 
case 2 

-0.05 

-.02 

-. 09 

.08 

.76 
-.39 

-1.04 
-.99 
1.43 

0.56 

.76 

1.09 

:ase 2 

:ase 3 
minus 

0 

.03 

-. 14 

-. 09 
-.e5 

2.93 
1.13 

.70 
-3.16 

0.85 

1.20 

1.51 
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with  the  parameter  estimation  technique  (eq. ( 1 4 ) ) .  I n   t h e   f i r s t  two cases, w e  
assumed the   r ad ia t ion   t o  be Lambertian and used  a and  a 2.5O subgrid  quadrature 
scheme. The average  zonal  difference is 0.56 W-m’2 and the  average  regional  differ- 
ence is 0.76 W-m“. Since  the  global  difference is approximately  zero (-0.05 W-m’2 ), 
the  average  zonal and regional   dif ferences  ref lect   the   t rue  differences i n  the  shape 
of the  radiant   exi tance  f ie ld .  It is reasonable t o  expect  the 2.5O subgrid  quadra- 
t u r e  scheme t o  give  the  bet ter   resul ts   s ince  the  quadrature   errors   are   smaller .  The 
computer  time, a l so   l i s t ed   i n   t he   t ab l e ,  is about  three times greater   for   the  smaller  
subgrid  quadrature. However, 335 seconds of computer time on a Control Data CYBER 
173 computer is not  considered  excessive, so t ha t  a 2.5O quadrature scheme was 
adopted  for  this  study. The zonal   dif ferences  are   plot ted i n  f igure  5 and a re  
relatively  small   except  for  the  northern and southern  zones. 

(a)  Difference due to  subgrid  quadrature 
scheme (case 1 minus case 2). 

W - i 2  I I I I I I I 

-2 (b) Difference due to   direct ional   funct ions t/ 
-2 L (case 2 minus case 3 1 .  

J 

I I J 
0 30 60 90 120 150 180 

COLATITUDE, deg 

Figure 5.- Zonal differences  for  parameter  estimation  technique. 

Cases 2 and 3 i n  t ab le  I1 represent  the  differences due to   d i f f e ren t   d i r ec t iona l  
functions. The differences  are  very small on a global   scale ,   larger  on a zonal 
scale ,  and s t i l l  larger  on a regional  scale. The global  radiant  exitance was the  
same f o r  both  cases, and the  average  zonal  difference was 0.85 W-mm2. The average 
regional  difference was 1.20 W-m-’? and we would expect  the  individual  regional  dif - 
ferences  to  range between k3.02  W-m-’. Also,  assuming  a  limb  darkening  function 
increases  the computer  time from 335 to 456’ seconds. It is not  clear which of these 
two solut ions  best   represents   the  t rue  radiant   exi tance  f ie ld .  The f i r s t  assumes no 
limb  darkening,  while  the  second  probably  overestimates  the limb darkening. Assuming 
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a limb darkening  function  between  these two would probably  give  better  results.  
Moreover, i f   t he   d i r ec t iona l   cha rac t e r  of each  region were known then   the   so lu t ion  
would be  improved  even fur ther .  The purpose  here, however, is t o   d e f i n e  on a global, 
zonal, and regional scale the   d i f fe rences  due t o   t h e  extreme direct ional   funct ions.  

Deconvolution  Technique 

With the  deconvolution  technique, w e  take  advantage of t he   f ac t   t ha t   sphe r i ca l  
harmonics are the  eigenfunctions of t h e  measurement opera tor .   I f   the  measurements 
are used to   de f ine   t he   r ad ian t   ex i t ance   f i e ld  a t  satellite a l t i t u d e   i n  terms of a 
spherical  harmonic  expansion,  then  the  field is easi ly   reduced  to   the  top of t h e  
atmosphere by the  eigenvalues (eq. (20)). This  solution is based on the  following 
three  simplifying  assumptions: ( 1 )  the   sensor   integrates  incoming radiat ion  over  its 
f i e l d  of view with its directional  response S(a) being a function  only of the   nadi r  
angle, ( 2 )  t h e   d i r e c t i o n a l  dependence  of ex i t ing   rad ia t ion  a t  each  point of the   t op  
of t h e  atmosphere is a function  only of the  zeni th   angle  of the  exi t ing  ray,   and 
(3) continuous  measurements are available  over a sphere  concentric  with  the  Earth.  

The f i r s t  assumption is app l i cab le   t o  most w i d e  f i e l d  of  view sensors  because  of 
their   design.  Throughout t h i s   s tudy  w e  have  used S(a) = cos a, o r  a f l a t -p l a t e  sen- 
s o r  model. The second  assumption,  which states t h a t  R ( @ , @ , 8 )  = R ( 8 ) ,  is a reason- 
able  approximation  for  Earth emitted radiation. The t h i r d  assumption  contains two 
requirements. The f i r s t  is t h a t   t h e  measurements  be continuous  over a sphere. Since 
physical  systems  provide discrete measurements, w e  ca lcu la te   the   spher ica l  harmonic 
coefficients  with  equations ( 2 5 )  and ( 2 6 )  and then  approximate  the  continuous case 
with  the  smoothing  parameter Pn. The second  requirement is t h a t   t h e   o r b i t  be 
c i rcu lar .  

The implementation of the  deconvolution  technique  requires  that  w e  def ine  the 
direct ional   funct ion R ( 8 )  and t h a t  w e  t runca te   the   spher ica l  harmonic  expansion a t  
some f i n i t e  degree. To inves t iga te   the  dependence  of the   so lu t ion  on the   d i rec t iona l  
funct ion,   the   l imit ing  cases  of a Lambertian  function ( R ( 8 )  = 1 )  and a limb darkening 
function (eq. ( 4 1 ) )  have  been  examined.  These directional  functions  affect   the  solu- 
t ion  through  the  eigenvalues  (eq.  (1711,  which are given i n  t a b l e  I11 for  degree 0 
through  degree 12. Note t h a t  ho = 0.7343 for   both  direct ional   funct ions:   thus ,   the  

0 
1 
2 

4 
3 

6 
5 

7 
8 
9 
10 

0.7343 
.7217 
.6975 

.6208 

.6632 

.5726 
-5214 
.4693 
-4185 
.3707 
.3267 

TABLE 111.- EIGENVALUES OF mASUREPIENT OPERATOR 

[Re = 6378 + 30 = 6408 km; h = 1070 kml 

Degree, 

11 
12 

.2874 
-2526 

Limb darkening R 

0.7343 
.7233 
.7019 
.6713 
-6331 
.5893 

-4929 
.5419 

.3974 

.4443 

.3535 

.3132 

.2770 
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global  radiant  exitance is unaffected by directional  function. It is a lso   in te res t -  
ing   tha t  ho is the shape factor  (eq.  ( 4 0 ) )  used i n  the  shape factor  technique. To 
examine the   e f f ec t  of the  degree of truncation on the   so lu t ion ,  we have  expanded the  
measurements a t   s a t e l l i t e   a l t i t u d e  i n  a s e r i e s  of spherical  harmonics t o  degree 24 by 
equations (25)  and (26 )  and approximated t h e  continuous  solution by using p, based 
on So x 5 O  regions. The degree  dispersion  (eq. (39)) f o r   t h i s   s o l u t i o n  is glven i n  
f igure  6. The radiant  exitance  estimate  at   the  top of t h e  atmosphere was computed 
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Figure 6.- Degree dispersion of deconvolution  solution  based on 
Lambertian directional  function. 

by dividing  the  spherical harmonic coeff ic ients  by the  eigenvalues An based on 
Lambertian  radiation. The divergence of these two solut ions i n  f igure  6 is due t o  
the smoothing e f f ec t  of the measurement operator. It is seen  that   the  radiant 
exitance  spectrum  measured a t   s a t e l l i t e   a l t i t u d e  can  be divided  into two regions, one 
i n  which log  an  decreases  approximately  linearly  with n fo r  n < 15, and one i n  
which log  an is  rather  constant  for n > 15. The spectrum a t   t h e   t o p  of the atmo- 
sphere  likewise  consists of  two regions, one i n  which log an decreases somewhat 
l inear ly   for  n < 15, and  one i n  which log an increases somewhat l i nea r ly   fo r  
n > 15. The nearly  constant  spectrum a t   s a t e l l i t e   a l t i t u d e  is in te rpre ted   as  mea- 
surement  noise and produces  the  divergence of the   so lu t ion   a t   the   top  of the  atmo- 
sphere  since  the  eigenvalues  are a decreasing  sequence of values. Thus, it is 
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concluded  from figure 6 tha t   t he   coe f f i c i en t s   fo r  n > 15 a re  due primarily t o  noise 
and contain little information  concerning  the  radiant  exitance  f ield;   the  expansion 
is  therefore   t runcated a t  N = 15. 

The in t e rp re t a t ion  of a nearly  constant  spectrum as random noise is i l l u s t r a t e d  
by examining the  spectrum of a random f ie ld .   This  f ie ld  is defined on a 5O regional  
g r id  system where each  regional  value is a normal random variable  with mean of  zero 
and standard  deviation of 10 W - m 2 .  The expected  value  of  the  spectrum  for  this 
f i e l d  is derived  in  appendix C and  presented  in  f igure 6. Although t h i s  spectrum f o r  
a random f ie ld   gradual ly   increases   for  n > 15, it gives  support to t he  interpreta- 
t i o n  of a nearly  constant  spectrum as noise. 

To inves t iga t e   t he   s ens i t i v i ty  of the   so lu t ion   to   the   d i rec t iona l   func t ions  and 
the  degree of t runcat ion,   three cases w e r e  examined, as given i n   t a b l e  IV. Two 
l imit ing  direct ional   funct ions were examined and two d i f fe ren t   t runca t ion  degrees. 

TABLE IV.- SOLUTIONS FROM DECONVOLZPPION  TECHNIQUE  ILLUSTRATING DEGREE OF 

TRUNCATION AND OF DIRECTIONAL  FUNCTION 

Parameter 

~ 

Global  radiant  exitance, W-m-’ ........... 
Pole-to-pole  gradient, W-m-‘ ............. 
Equator-to-pole  gradient, W-rn-’ .......... 
loo  regional  radiant  exitance, W-m-’: 

P a c i f i c ,   t r o p i c a l  ...................... 
Pacif ic ,   high  lat i tude ................. 
Atlantic ,   subtropical  .................. 
Sahara ................................. 
Greenland .............................. 
South  Pole ............................. 

Lambertian R, 
Case 1 ,  

degree 15 

235.39 

11.60 

-23.19 

259.70 
190.99 
281.28 
283.54 
215.67 
109.38 

Lambertian R, 
Case  2, 

degree 12 

235.39 

11.60 

-23.19 

263.94 
191.40 
274.47 
289.95 
213.77 
111.05 

limb darkening 
Case  3, Case 1 

degree 12 case 2 

235.39 0 

11.58 l o  
-23.05 0 

264.26  -4.24 
191.65 
273.52 
288.46 
214.32 

-6.41 

Mea  weighted mean of absolute  zonal  differences,  ~-rn-’ ................................. I 0.85 

Area weighted m e a n  of absolute  loo  regional  differences,  W-m-’ .......................... 
Standard deviation of loo  regional  differences,  W-rn-’ ................................... 
”” - _ _ ~ ~ ~  

Case 2 
minus 
case 3 

0 

.02 

-. 14 

-.32 
-.25 

1.49 
.95 

-.55 
-2.10 

0.55 

.75 

.94 

As discussed  previously, a reasonable  choice of the  degree  of  truncation is N = 15 
based on the   p resent  1-month data set. However, Bess e t  al. (1981)  have  investigated 
12 months of Nimbus 6 data and  concluded t h a t  N = 12 is the  appropriate  expansion 
l i m i t .  Therefore,   the two solutions  based on N = 12 and 15 a re  compared i n  
t ab le  IV.  This com arison  reveals  that   the  average  regional  difference due t o   t r u n -  
ca t ion  is 3.94 W-m . Also,-$he average  regional  difference due t o   d i f f e r e n t   d i r e c -  
t iona l   func t ions  is 0.75 W-m . Thus, w e  conclude  that on a regional scale, t h e  
degree of t runcat ion  has  more influence on the  solut ion  than  the  direct ional   func-  
t ion.  The e f f e c t  of t runcat ion is reduced,  however, on a zonal scale, s ince   t he  
addi t ion of the  high-frequency  coefficients  (n = 13, 14, 15)  does  not  affect   the 
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zonal  values as m c h  as the  regional  values.  The average  zonal  difference due t o  
t runcat ion is 0.85 W-m-2 and due t o  d i f fe ren t   d i rec t iona l   func t ions  is 0.55 W-m-2. 
The individual  zonal  differences are p l o t t e d   i n   f i g u r e  7 .  The degree a t  which the  
spher ica l  harmonic  expansion  should be t runcated is very  important t o  the analysis .  
However, there is not a clear c r i t e r i o n  for  choosing t h i s  degree. For t h e  remainder 
of t h i s  study we use a spher ica l  harmonic  expansion t o  degree 12 for the deconvolu- 
t ion  technique. 
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Figure 7.- Zonal differences  for  deconvolution  technique. 

COMPARISON O F  TECHNIQUES 

The three data  analysis  techniques  have been derived  and examined individual ly  
t o  e s t ab l i sh  their  necessary  assumptions  and characteristics. I n  t h i s  section, these 
techniques are compared numerically.  Since  each  technique processes the same mea- 
surement data,  any d i f f e rences   i n  the  derived  radiation fields are a r e s u l t  of the  
techniques  themselves. - 

A summary of t h e  three rad ia t ion  fields tha t  r e s u l t  from the three techniques is 
presented  in   table  V and t h e  zonal  differences  are plotted i n   f i g u r e  8. The shape 
factor   solut ion  corresponds  to  the 5O regional g r i d  system  and was presented  in  
t a b l e  I. This case was chosen to   r ep resen t   t he  shape factor  technique so t h a t  a l l  
techniques would have not  only a common data set but also a common gr id  system. The 
parameter estimation  solution  corresponds t o  t h e  Lambertian direct ional   funct ion  and 
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TABLE v.- SOLUTIONS F'RO~ THREE TECHNIQUES mrz COHPARISON 

Parameter 

- 

Zlobal radiant  exitance, W-m-' ........... 
?ole-to-pole  gradient,  W-m-' ............. 
Squator-to-pole  gradient, W-m-' .......... 
10. regional   radiant   exitance,  w-rn-': 

P a c i f i c ,   t r o p i c a l  ...................... 
P a c i f i c ,   h i g h   l a t i t u d e  ................. 
Atlantic ,   subtropical  .................. 
Greenland 
Sahara 

South Pole ............................. 
................................. .............................. 

€actor  
Shape 

235.39 

11.40 

-22.03 

266.03 
191.33 

279.59 
268.29 

221.09 
124.50 

Parameter 
zstimation 

235.42 

11.61 

-23.35 

270.64 
186.87 
280.04 
308.38 
226.29 
96.55 

~ ~~~~~ 

Deconvolution 

235.39 

11.60 

-23.19 

263.94 

274.47 
191.40 

289.95 
213.77 
111.05 

Area weighted  man of absolute  zonal   differences,  W-rn-' ................. 
Area weighted mean of  absolute 10. regional   d i f ferences ,  W-m-' .......... 
Standard  deviation  of l o o  regional   d i f€erences ,  W-m-' ................... 
Correlat ion  (regional   sca le)  ............................................ 

" 

Shape factor  
minus 

>arameter  estimation 

- 0 . 0 3  

-.21 

1.32 

-4.61 

-11.75 
4.46 

-28.79 
-5.20 
27.95 

7.42 

10.65 

13.51 

.95 
-~ ~ ~~~ 

Shape factor  
minus 

deconvolution 

0 

-.20 

1.16 

- .07 
2.09 

-10.36 
-6.18 

13.45 
7.32 

4.04 

5.95 

7.44 

.98 

parameter estimation 
minus 

deconvolution 

0.03 

.01 

-.16 

6.70 
-4.53 

5.57 
18.43 

-14.50 
12.52 

4.84 

8.60 

10.78 

.97 

a 2.5O quadrature scheme and w a s  f i r s t   p r e s e n t e d   i n   t a b l e  11. The Lambertian  func- 
t i o n  w a s  chosen fo r  its s implici ty ,  and t h e  2.5O quadrature scheme fo r  its accuracy. 
The deconvolution  solution  taken from t a b l e  I V  corresponds t o  a spher ica l  harmonic 
expansion t o  degree 12 and a Lambertian  directional  function. The 12th  degree expan- 
s ion  was chosen s ince  it probably  represents  the  appropriate  expansion l i m i t  f o r  
monthly information  over a yearly  cycle,  as discussed by Bess e t  al .   (1981).  The 
Lambertian  function was chosen so that   the   parameter   es t imat ion and the  deconvolution 
would have no differences due t o  the  direct ional   funct ion.  A l l  three  techniques 
produced e s sen t i a l ly   t he  same estimate of the  global   radiant   exi tance.   This  is char- 
a c t e r i s t i c  of a f la t -p la te   sensor  and the  wide f i e l d  of view measurement. The other  
pe r t inen t  parameters, however,  depend on the  technique employed. 

The d i f fe rences   in   these   th ree   so lu t ions   a l so   a re   p resented   in   t ab le  V. The t w o  
so lu t ions   t ha t  correlate best  on a IOo regional scale (eq. (38 ) )   a r e   t he  shape f ac to r  
and the  deconvolution  solutions,   their   correlation  being 0.98. Their  avera e zonal 
difference is 4.04 W-m-2 and t h e i r  average  regional  difference is 5.95 W-m . It is 
su rp r i s ing   t ha t   t he  two techniques  with  the  highest   correlation  should  vary by t h i s  
la rge  amount. The regional  standard  deviation of 7.44 W-m-2 implies t h a t  about 
95 percent of the  regional   dif ferences  are  between f15 W - ~ I - ~ .  The t w o  solutions  with 
t h e  least cor re la t ion  are t h e  shape f ac to r  and t h e  parameter estimation  solutions.  
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Figure 8.- Zonal differences for three techniques. 
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The regional standard deviation for these two solutions was 13.51  w-m-2. The distri- 
butions of these differences  are presented in histograms in figure 9. These distri- 
butions are approximately normal and  centered  about zero. The common global  value 
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Figure 9.- Histograms of regional  differences  for the  three techniques. 

for  the  three solutions results in the zero means.  Again,  we see that the shape 
factor  and the deconvolution solutions are  most  similar on a regional scale. 

The three solutions can also be compared by examining their spatial spectra. 
The basic representation of the deconvolution solution is in the spherical harmonic 
coordinate system. The  shape factor and the parameter estimation solutions have been 
transformed to the spherical harmonic system,  and  the spatial spectrums of  all three 
solutions are compared in figure 10. The spectrum of the parameter estimation solu- 
tion decreases up to about  degree 15 and then exhibits a different type of behavior. 
The deconvolution spectrum follows the parameter estimation spectrum very closely to 
degree 12 and  is zero from there on because of the 12th  degree  truncation. The 
shape  factor spectrum gradually departs from the other two spectrums, the departure 
becoming significant after degree 3. 
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Degree  dispersion  for  the  three  techniques. 

By  comparing  the  spectral  content  of  the  three  solutions,  we  conclude  that  the 
parameter  estimation  and  deconvolution  solutions  are  most  similar  on  this  basis  to 
degree 12 and  that  the  shape  factor  solution  does  not  compare  favorably  with  the 
other  two  solutions.  Recall  that  the  deconvolution  technique  enhances  the  high- 
frequency  spatial  components  of  the  solution  by  dividing  by a decreasing  sequence  of 
eigenvalues  (eq. (20)). The  shape  factor  technique, on the  other  hand,  divides  all 
measurements  by a single  shape  factor  (eq. (6) 1 which  is  equivalent  to  dividing  all 
frequency  components  by  the  first  eigenvalue lo . Thus,  the  difference  between  the 
two  spectra  increases  with  degree.  Since  the  wide  field  of  view  sensor  smooths  the 
measurements,  it  is  reasoned  that  the  deconvolution  technique  yields  the  more  accu- 
rate  solution.  Although  not  explicit  in  the  formulation,  it  can  be  concluded  that 
the  parameter  estimation  solution  also  enhances  the  high-frequency  components,  since 
it is so similar  to  the  deconvolution  solution.  This  enhancement  was  also  demon- 
strated  by  Smith  et  al. (1975). Moreover,  the loo X Z O O  grid  system  does  not  seem to 
degrade  the  parameter  estimation  solution.  It  is  remarkable  that  the  spectra  of  the 
parameter  estimation  and  deconvolution  solutions  are so similar  considering  that  the 
spherical  harmonic  coefficients  of  the  deconvolution  solution  were  initially  computed 
at  satellite  altitude  with 50 x So regional  data  and  the  coefficients  of  the  param- 
eter  estimation  solution  were  computed  at  the  top  of  the  atmosphere  with loo x 20°  
regional  values. 
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However, the parameter  estimation  and the deconvolution  solutions  do  not  compare 
favorably on a  regional scale (from table V, the average  regional  difference is 
8.60  W-m-2 1.  The  problem  results  from the coordinate  system  transformations. The 
deconvolution  solution  is  defined  in terms of  spherical  harmonics.  The parameter 
estimation  solution  is  defined  on  a loo X 20°  grid  system,  converted to a loo X loo 
grid  system,  and then converted to a spherical harmonic  representation.,  Tradition- 
ally, the transformation  from  regions to spherical  harmonics  has  been considered 
valid to a  degree  number  N  equal to 180  divided by the region  size, or N = 18 for 
IOo regions.  Rapp  (19771,  however,  has  shown  that this transformation  can  be 
expanded even  beyond this degree. We  have  extended the transformation to N = 24 in 
figure 10  but have  only  compared to degree 12, since that is the limit  of the decon- 
volution  spectrum.  Certainly the transformation from  regions to spherical  harmonics 
yields  a  spectrum of the parameter  estimation  solution  reliable to degree 12. This 
is further  substantiated by the favorable  comparison  of the two spectra. The 
regional  comparison, on  the other  hand,  necessitated transforming  the deconvolution 
solution from  spherical  harmonics to regional  values.  Traditionally, this transfor- 
mation  is  valid  for  grid  sizes  equal to 180 divided by N, or 15O regions  for the 
12th  degree  spherical  harmonic  expansion.  Thus, the 12th  degree  spherical  harmonic 
solution  is not adequate to establish loo regional  values.  Traditionally,  a  spher- 
ical harmonic  expansion to degree 18 would be  required to yield loo regional  values. 
Rapp  finds  that  even an 18th  degree  expansion  is  inadequate  and  suggests  that  a 27th 
degree  spherical  harmonic  expansion  would  be  necessary to recover loo regional 
values.  Thus, the present  deconvolution  solution  of  degree 12  is quite  insufficient 
to yield loo regional  values. For  this reason the parameter  estimation  and  decon- 
volution  solutions do  not compare  favorably on a 1 O o  x IOo grid  system.  Since  only  a 
12th  degree  solution  is  available to define the regional  values,  they are smoothed 
because  of the lack  of the high-frequency  terms. As previously  discussed, the  shape 
factor solution  is  also  a  smoothed  representation,  since it does  not  enhance the 
high-frequency  components  of the solution.  Thus, these  two smooth  solutions,  from 
the shape  factor  and  deconvolution  techniques,  compare  favorably on a  regional basis. 
Nevertheless, the parameter  estimation technique may  give more  reliable loo X loo 
regional values than either  of these  two smoothed  solutions.  However,  because the 
true. field is  unknown,  one  cannot  demonstrate the accuracy of  any analysis technique 
on  the basis of these results. 

As previously  discussed,  use of loo x 20°  regions  in the parameter  estimation 
technique did  not  seem to degrade  the  spectrum  of the solution,  at  least noti to 
degree 12. From  the  deconvolution  technique  we  can  obtain the grid  size resolution 
by the traditional  method  of  dividing 180°  by the degree  number 12. This would  imply 
that 15O x 15O regions,  of  which  there  are  185 to cover  the  globe,  can  be  resolved. 
However, there  are 208  regions  of  size loo X 20°  over the globe. Thus, we  conclude 
that a loo X 2 0 °  regional  system  is  adequate. 

The three  numerical  examples  considered  in this section  are  summarized  in 
table VI. The  sensitivity  of the three  techniques to  the assumed  directional  func- 
tion represents the difference  in the solution using  the Lambertian  and  limb  darken- 
ing functions.  The parameter estimation technique is  more  sensitive than  the decon- 

function.  The  computer  storage  requirements  and  running  times  are  also  given for 
comparison and  should  be  interpreted  relatively, since  the  skill of the programmer 
and the  type of  computer  affect these numbers.  We  can  conclude,  however, that the 
computational  burden for  the  shape  factor and  deconvolution techniques is small 
compared  with  that  for the  parameter estimation  technique.  Since the  quadrature 
scheme  and  the directional function greatly affect  the computational  burden, more 
detailed  entries  are  given  in table VI for the  parameter estimation  technique. 

' volution  technique. The  shape  factor  technique  is independent  of  directional 
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TABLE VI.- SG"U7Y OF NlMERICAL EXAMPLE  SOLUTIONS 

Technique 

Algorithm 

Data p rocess ing  

D a t a   s e t  

Grid  system 

D i r e c t i o n a l   f u n c t i o n ,  R 

Assumptions 

S e n s i t i v i t y  t o  
d i r e c t i o n a l   f u n c t i o n , a  w-m-': 

Global d i f f e r e n c e  
Zona l   d i f f e rence  
l o o  r e g i o n a l   d i f f e r e n c e  

Computer storage 

Computer running 
time, sec 

S h a m  factor 

I n d i v i d u a l  

Averaged  over 5. X 

r eg ions  

50 X 5O r eg ions  

Homogeneous 

1. Radian t   ex i t ance   cons t an t  

2. Es t ima te   a s soc ia t ed   w i th  
over  FOV 

n a d i r   p o i n t  

None 
None 
None 

17 000 

1 

~ 

Parameter  estimation 

Batch 

Averaged over 5. X 5- 
r eg ions  

l o o  X 20° r e g i o n s  

Lambe'ktian or limb darkening 

1. Rad ian t   ex i t ance   cons t an t  

2. R known f o r   e a c h   g r i d  
over  5' X 5- r eg ions  

3. Extrapolate   10-  X 20° 
r eg ion  

r eg ion  t o  10. X l o o  
r eg ion  

None 
0.85 
1.20 

b92 000 c72 000 

L D: b456 c151 
Lamb: b335 ClZO 

Deconvolution 

;(e,@) = An-'# C(e,@) 
N n  

n-0 m=-n 

Batch 

Averaged  over 5' x 5' r eg ions  

Spherical   harmonics  

Lambertian or l imb  darkening 

1. Sensor   response   func t ion  
of a only 

2. R func t ion  of e only  and 
homogeneous over  globe 

4. S o l u t i o n   t r u n c a t e d  a t  N = 12 
3. Data def ined on sphe re  

None 
0.55 
0.75 

21 000 

. .  

5 

a .  Dl f f e rence   be tween   so lu t ions   w i th   Lamber t i an   and   w i th   l imb   da rken ing   d i r ec t iona l   func t ions .  
bFor quadra tu re  scheme with 2.5O subgrid.  
CFor  quadrature  scheme  with 5 O  subgrid.  

Finally,  the  advantages  and  disadvantages  of  the  three  techniques  are  summarized 
in  table VII. The  shape  factor  technique  requires  a  minimim  of  computational  time, 
is independent of the  directional  function,  and  does  not  require  knowledge  of  the 
complete  data  set.  The  deconvolution  technique  is  fast  computationally,  gives  accu- 
rate  spherical  harmonic  coefficients,  and  produces no quadrature  errors.  They  both, 
however,  have  the  disadvantage  of  inaccurate  regional  values.  Other  than  the  compu- 
tational  burden,  the  parameter  estimation  technique  is  impressive,  yielding  accurate 
spherical  harmonic  coefficients  from loo x IOo regional  values.  This  implies  that 
the  regional  values  are  reliable.  Because  the  directional  function  can  be  defined  at 
each  quadrature  subregion,  the  technique  has  considerable  flexibility. 

TABLE VI1. -  ADVANTAGES AND DISADVANTAGES  OF  TECHNIQUES 

Technique Advantages 

Shape f a c t o r  Simple, f a s t  
Requires l i t t l e   s t o r a g e  
Popular 
Does not require  complete  data  set 
Accurate  global mean 

Responds t o   l o c a l   d i s c o n t i n u i t y  
Independent of R 

Parameter  estimation Enhances  high  frequency 
Heterogeneous R over  globe 
Accurate  spherical  harmonic 

coe f f i c i en t s  . 

Deconvolution Fast  
Accurate   spherical  harmpnic 

coe f f i c i en t s   t o   deg ree  12 
Requires l i t t l e   s t o r a g e  
Enhances  high  frequency 
No quadra ture   e r rors  

Disadvantages 

Does not  enhance  high  frequenq 

Inaccurate  high-frequency 
Inaccurate  regional  values 

spherical   harmonic component: 

Requires  large  storage 
Requires  complete data s e t  
Extrapolat ion from 10' x 20' 

p l a d r a t u r e   e r r o r s  

Inaccurate  regional  values 
Requires  complete data s e t  

R funct ion of e only 

r e g i o n s   t o  l o o  X 10' regions 

def ined on sphere 
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CONCLUSIONS 

Three data analysis  techniques have  been  examined for   es t imat ing   rad ian t   ex i t -  
ance a t  t h e   t o p  of t h e  atmosphere from Earth  radiation  budget  observations. The 
shape  factor, parameter estimation, and  deconvolution  techniques  have been  compared 
by examining t h e i r  assumptions  and character is t ics ,   applying them t o  t h e  same data 
set, and t ransforming   the i r   resu l t s  t o  the  same coordinate  system. 

The cha rac t e r i s t i c s  of t h e  shape factor  technique w e r e  examined by est imat ing 
the   rad ia t ion   f ie ld   over  a 5O and a loo  grid system. The difference between these  
t w o  approaches w a s  0.30 W-m-2 on a global scale and 0.83 W-m-2 on a loo  regional 
scale. These r e s u l t s   a r e  independent of the  direct ional   funct ion  s ince we assumed 
t h e  same d i r ec t iona l   func t ion   fo r  a l l  points  on t h e  globe.  This  assumption w a s  shown 
t o   y i e l d  a shape f ac to r  which is independent of the   d i rec t iona l   func t ion .  

Two f ac to r s   a f f ec t   t he   r ad ia t ion   f i e ld   de r ived  by the  parameter  estimation  tech- 
nique: the  direct ional   funct ion and the  quadrature  formula. The difference between 
using a Lambertian  and a limb darkening  function w a s  negl ig ib le  on a global   scale  and 
1.20 W-m'2 on a loo  regional scale. The difference between a 2.5O and a 5O quadra- 
t u r e  scheme w a s  0.05 W-m-* on a global   scale  and  0.76 W-m-2 on a l o o  regional scale. 

Implementation of the  deconvolution  technique  requires  that  we def ine  the direc- 
t iona l   func t ion  and t h a t  w e  t runca te   the   spher ica l  harmonic  expansion a t  some f i n i t e  
degree.  Neither one  of these  t w o  factors   affected  the  global   average.  On a 1 O o  
regional  scale, t h   d i f f e rence  between using a Lambertian  and a limb  darkening  func- 
t i o n  w a s  0.75 W-m and the   d i f fe rence  between t runca t ing   t he   sphe r i ca l  harmonic 
expansion a t  degree 12 and a t  degree 15 w a s  3.94 W-m'2. Thus, on a regional   scale ,  
the  degree of truncation  has more influence on the  der ived  radiat ion  f ie ld   than  the 
direct ional   funct ion.  

-5 

The th ree  data analysis  techniques have  been intercompared. A l l  three  tech- 
niques  produced e s sen t i a l ly   t he  same estimate of the  global   radiant   exi tance.  The 
two so lu t ions   t ha t  have the  highest   correlat ion on  a loo  regional  scale  are  the  shape 
f ac to r  and  deconvolution  solutions.  Their IOo regional   dif ference is 5.95 W-m-2. 
The favorable comparison of these  t w o  solut ions is due t o   t h e i r  smoothness. The 
shape f ac to r  smooths the   so lu t ion  by not  enhancing the  high spatial  frequencies. The 
deconvolution  technique smooths the   so lu t ion  by t runca t ing   t he   sphe r i ca l  harmonic 
representa t ion   a t  a f i n i t e  degree. 

Another  comparison of the   th ree   so lu t ions  is made by examining t h e i r  spatial 
spectra .  The parameter estimation and the  deconvolution spectra are very close out  
t o  degree 12 where the  deconvolution  spectrum is truncated. The shape f ac to r  spec- 
trum gradually  departs from these two spectra, the  departure  becoming l a r g e   a f t e r  
degree 3. The parameter estimation and the  deconvolution  solutions do not compare 
favorably on a regional scale because  the  12th  degree  spherical harmonic so lu t ion  is  
not   adequate   to   es tabl ish IOo regional  values. However, t h e i r  spatial  spectra  do 
compare favorably  (out   to  degree 12)   s ince  loo  regional   values   yield a r e l i a b l e  spec- 
t r a  t o  degree 12.  Even though the  shape factor and the  deconvolution  solutions com- 
pare most favorably on a l o o  regional  scale, the  parameter estimation  technique may 
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give  more reliable l o o  regional values than either of the two smoothed solutions. 
However,  because the  true radiation field is unknown,  one  cannot demonstrate the 
accuracy of any of the three analysis techniques  on the basis of these results. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
September -9, 1981 
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APPENDIX A 

SPHERICAL HARMONIC COEFFICIENTS FROM REGIONAL VALUES 

Consider  the  radiant  exitance  field  over  the  globe i n  terms of regional  values 
which are  the  average  radiant  exitances  over  the  regions. A s e t  of regional  values 
can be transformed t o   s p h e r i c a l  harmonic coef f ic ien ts  by t he   p r inc ip l e  of orthogonal 
pro jec t ion ,   tha t  is, 

where Cf: a re   t he   sphe r i ca l  harmonic coef f ic ien ts  and G ( @ , @ )  is known i n  terms of 
regional  values. These coef f ic ien ts ,  however, represent  the  averaged  or smoothed 
f i e l d .  To compute the   o r ig ina l ,   o r  unsmoothed, coef f ic ien ts  from the  regional  
values,  Ef: must be increased,  or enhanced, t o   r ep resen t   t he   o r ig ina l   f i e ld .  The 
smoothing  parameter pn defined by Pellinen  (1967) is used   fo r   t h i s  purpose.  Fol- 
lowing h i s  approach,  define  the  original  spherical  harmonic representat ion  as  

w 

w n  
X ( @ , @ )  = N cm cos ~ C D  + S: s i n  d pm(cos 0 )  :( n n=O m=O > n  

and the   sphe r i ca l  harmonic representat ion of the  constant  regional  values which 
requires  an i n f i n i t e  number  of terms can be defined  as 

where X ( @ , @ )  = xk is constant   for  Okl c 0 < 4c2 and @k1 Q c @k2. ~ a p p  (1977) 
has shown t h a t  it is theoret ical ly   expedient   to   use a c i r cu la r  smoothmg operator i n  

A. 

place of 
c i r c u l a r  
tangular  

where 0 

- - ~ 

the   rectangular   regional   operator   (eq.  (30)). The angular  radius of t h e  
region y* is chosen so tha t   the   a reas  of the   c i rcu lar   reg ion  and the  rec- 
region  are   the same. This   re la t ionship is given by 

is the  angular  dimension of the  rectangular  region. A loo X l o o  rectangu- 
lar region  corresponds t o  a circular  region  with y* = 5.63O. 

The c i r c u l a r  smoothing  operator is s imi l a r   t o   t he   r ec t angu la r  smoothing operator 
(eq. (30 1 )  and is given by 
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APPENDIX A 

where y and p are t h e  polar coordinates   descr ibing  the  c i rcular   region  centered 
0 + o  

k l  k2 and @ = 'k1 + k2 
k 2 k 2 

a t  0 = . Pellinen  presented  the  following 

re la t ionship :  

where the  weighting  function p ( y 1 is taken as 

Simplifying  with  equation (A51 gives 

where 
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APPENDIX  A 

1 
'n = 1 - cos y* 1' P:(cos y )  sin y dy y=o 

Using 

we  can  express  the  smoothing  parameter Pn as 

1 
'n = 1 - cos y* 2n1+ 1 En-1 (cos y* )  - Pn+l (cos y*;J (n = 1, 2, ... ) 

and $ = 1. 
0 

Now Xk in  equation (A61 represents  the  average  over  a  circular  region  centered 
at Ok and CDk. If  this  expression is used  to  approximate  the  average  over  a  rec- 
tangular  region,  then  we  substitute $ for %(O,CD) in  equation  (A31  and by 

comparing  coefficients  obtain cf: = &Cf: and s"," = $,S: . Thus,  the  original  spher- 

ical  harmonic  representation  denoted  by Cf: and Sf: is  smoothed  by  the  parameter 
$, when  averaged  over  a  region. To compute  the  original  spherical  harmonic  coef- 
flcients C: and Sf: from  the  regional  values,  we  first  must  calculate  the  spheri- 

cal harmonic  coefficients e: and 5," that  represent  the  smooth  field  by  equa- 

tion  (All  and  then  divide  them by pn;  that  is, Ct = fIn -lWm Cn and SE = pn -1 Sn. -m It 

is  interesting  to  note  that  as  a  result  of  equation  (As), &, is  a  function  of 
degree  n  but  not  a  function  of  order  m  of  the  spherical  harmonic.  The  smoothing 
parameter $, is  presented  in  figure 3 for  two  values of y*. 
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A P P E N D I X  B 

I n   t h i s  appendix, a formula  for  estimating loo X loo regional   radiant   exi tances  
from loo X 20°  regional  radiant  exitances is derived on a zonal basis so t h a t   t h e  
loo x 20° regional  estimate of one  zone affects   only the loo x loo regional  estimates 
of t h a t  zone. The c r i t e r ion   fo r   d iv id ing   t he  estimate is t h a t  the sum of the  s lopes 
squared  around  the zone is a minimum. This  yields   the  solut ion  with  lowest   spat ia l  
frequency.  Consider a  zone composed  of loo X 20° regions, where the   rad ian t   ex i t -  
ances  are  denoted by M1, M2, ..., Mn. Further let  us define the  loo X loo radiant  
estimates by Mll, M12,  M21, M22, ..., s2, where Mil corresponds t o  the western 
half  of the i t h  region and Mi2 corresponds to   t he   ea s t e rn   ha l f .  Thus, 
Mi = (1/2)(Mil + Mi2).  The following diagram is helpful :  

The sum of the  slopes  squared S is 

Subs t i tu t ing   the   re la t ion  Mi2 = 2Mi - Mil gives 

or  i n  matrix form 

S = 8 M M  + 6 X  X - 12X M + 2 X   P X  - 4 X  P M T T T T T T  

38 



APPENDIX B 

where 

rn 

X x  = [Mll M21 . . . 

P =  

- 
0 1 0 
0 0 1 . . . . . . . . . 
0 0 0 
1 0 0 - 

Since w e  des i re  t o  minimize 

Mn 

Mnl 

... - 
0 
0 0 . .  . . . . . . . .. 1 
0 ... 

S with  respect t o  X,  

- = 1 2 X  - 12M + 2PX + 2P X - 4P M = 0 dS T T 
dx 

o r  

(61 + P + P T ) X  = (61 + 2PT)M 

The so lu t ion  of equation (B1) f o r  X defines Mil (i = 1, 2, ..., n ) ,  and 
Mi2 = 2Mi - Mil. These are t h e  l o o  X I O o  regional   radiant   exi tances   that  minimize 
t h e  sum of the  slopes  squared and give  the  smoothest  curve  through  the  data.  Solving 
equation (B1) f o r  n = 4 gives 

where Mo = M, and M,.,+l = M1. For n = 5, 

where M-1 = S-1 and s+2 =.M2.  For t h i s   s tudy  we have  approximated the   so lu t ion  
t o  equation (B1) by equation (B2) f o r  a l l  n. 
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APPENDIX C 

SPECTRUM OF A RANDOM FIELD 

The in t e rp re t a t ion  of a nearly  constant spectrum as random noise is i l l u s t r a t e d  
by examining t h e  spectrum of a random f ie ld .   Define  the random f i e l d  by 5 O  X 5 O  
regional  values 3, where 3 i s  a normal random variable   with mean zero and vari-  
ance 2.  Also  define E [X X .  1 = 6zG2, which is the  regional   equivalent  of white 
noise. From appendix A the   spher ica l  harmonic c o e f f i c i e n t s   f o r   t h i s  random f i e l d  are k 3  

and 

(.:) = ($7 f 5 'k'j 1 2 

J m 
cn ( 0 , Q  Ym (0' , @ I )  dA dA' 

cn n k=l  j=1 Region k Region j 

and the  expected  value of k:)' is  

W e  derive a similar expression  for E [ (S,) 3 and def ine  m 2  

which is represented   in   f igure  6 f o r  = 10 W-m-2. Although t h e  spectrum f o r   t h e  
random f ie ld   gradual ly   increases   for  n > 15, it suppor ts   the   in te rpre ta t ion  of a 
constant 
yEn can 

spectrum as noise. N o t e  t ha t   i f   t he   r eg ions  are s u f f i c i e n t l y  small so t h a t  
be assumed constant  over  the  region,  then 

and equation  (Cl) becomes 
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APPENDIX C 

with a similar expression  for E [ (SE)2] , the  expected  value of the  degree  variance 
f o r  small regions is approximately  given by 

Thus, t h e  spectrum of a random f ie ld   def ined  on  a regional grid system is propor- 
t i o n a l  t o  d m ,  and f o r  a 5 O  X So regional  grid  system  the  spectra  given by equa- 
t i o n s  ( C 2 )  and ((231 are indis t inguishable .  
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